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Motivation 
The APS storage ring is a very complex machine containing 400 quadrupoles and 280 

sextupoles. Each quadrupole has a separate power supply, which could have calibration 
errors, and each sextupole could have a non-zero beam orbit in it, which results in 
additional quadrupole errors. The quadrupole calibration errors and non-zero orbit 
through the sextupoles are the two main sources of linear optics distortion, and this 
distortion could seriously affect the performance of the storage ring. 

From the beginning of the APS storage ring operation there was a substantial 
difference between the linear model and the real storage ring. We even have to use some 
empirical correction factors when transforming the model into the real machine and back 
to get the betatron frequencies correct. This results in difficulties when tuning the 
machine to new lattice conditions such as the low-emittance lattice or converging beta 
function lattice. That is why we decided to develop a fast method for linear lattice 
calibration using orbit response matrices. 

There are several other problems that can be solved using the response matrix fit 
method: 
• Beta function measurements around the ring. Right now the only way to measure the 

beta functions at the APS is by varying quadrupole gradients. It takes about seven 
minutes for one quadrupole, so to accurately measure the beta functions at just one 
point per sector takes almost five hours. 

• BPM gain calibration. There are more than 400 beam position monitors (BPMs) 
around the ring, and many of them have substantial gain errors. Right now there is no 
reasonably fast way to calibrate them all. 

• Local linear coupling characterization and correction. 
• Knowing the precise linear model will probably help to better understand the nonlinear 

character of the ring. 



Method description 
The orbit response matrix is the change in the orbit at the BPMs as a function of 

changes in steering magnets. The response matrix is defined by the linear lattice of the 
machine; therefore it can be used to calibrate the linear optics in a storage ring. Modern 
storage rings have a large number of steering magnets and precise BPMs, so 
measurement of the response matrix generates a very large array of precisely measured 
data. Analysis of this data is a powerful and accurate way to recover the linear optics of a 
storage ring.  

The main idea of the analysis is to adjust the quadrupole gradients of a computer 
model of the storage ring until the model response matrix best fits the measured response 
matrix. The method was first suggested (to the author’s knowledge) by Corbett, Lee, and 
Ziemann at SLAC [1] and refined by Safranek at BNL [2]. A very careful analysis of the 
response matrix was done at the NSLS X-ray ring [3] and at the ALS [4]. A similar 
method was used at the ESRF for characterization and correction of the linear coupling 
[5] and to calibrate quadrupole families [6]. There are a number of papers in the Particle 
Accelerator Conference Proceedings that describe similar model calibration techniques.  

The problem of fitting the response matrix is solved in the following way. Let the 
response matrix M be a function of the vector of variables x. Then we need to solve the 
equation 
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which can be solved by Newton’s method: 
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where x0 corresponds to the initial model. Finally, to fit the response matrix, we have to 
determine all variables that the response matrix depends on, calculate the derivative of 
the response matrix with respect to the vector of variables, and then invert it. After that, 
the solution can be found by iteration.  

The most obvious and important variables are focusing errors (quadrupole calibration 
errors or orbit errors in sextupoles), corrector calibration errors, and BPM gain errors. 
Another obvious but less important set of variables is the energy shift associated with the 
changing of each steering magnet. These are the variables that are used for the response 
matrix fit described in this report. An example of other variables can be found in ref. [4], 
where four parameters were used to fit the signal from each of four BPM buttons, and the 
longitudinal positions of the steering magnets were also varied. The decision on what 
variables to use depends on details of the particular storage ring and how accurately the 
response matrix can be measured. For the APS storage ring, another possible set of 
variables could come from nonlinearity of the P0s (narrow bandwidth) BPM signals. 
 



Application of the method to the APS storage ring 

Difficulties: model size and degeneracy 
Up to this time, the most comprehensive analysis of the response matrix has been 

done at the NSLS X-ray ring and the ALS. These two storage rings are much smaller than 
the APS. In the case of the X-ray ring, 626 variables were varied to fit 8,640 elements in 
the response matrix. At the ALS a total of 500 variables were varied to fit 15,744 
elements in the matrix. In case of the APS, if one would try to use all correctors and 
BPMs, there would be 2,240 variables to vary and about 560,000 elements to fit. The size 
of the response matrix derivative would be 9 Gb and is much larger than the available 
size of memory in average computers. In addition, the computation time would be many 
days.  

There are two sources of model degeneracy that the APS storage ring has that the 
other smaller rings lack. First, the smaller rings are able to store the beam without the 
sextupoles powered. This allows them to separate two kinds of gradient errors: 
quadrupole imperfections and orbit errors in sextupoles. Second, the average betatron 
phase advance between quadrupoles at APS is 0.088, while for the NSLS X-ray ring it is 
0.17 and for the ALS it is 0.28. 

Choice of variables 
As mentioned above, use of the entire APS storage ring response matrix for the fit 

would require inversion of a huge 2,240 × 560,000 matrix. Right now this is impossible 
without using a “supercomputer.” That is why we have to limit the size of the measured 
response matrix.  

In general, the size of the uncoupled response matrix is  

yBPMycorrxBPMxcorrelements NNNNN ×+×= , 
where Ncorr and NBPM are the number of correctors and BPMs in the x and y planes The 
number of variables is  

yBPMycorrxBPMxcorrquadsriablesva NNNNNN +++⋅+= 2 , 
where the factor of 2 in front of Ncorrx comes from the energy variation.  

One way to decrease the size of the response matrix is to fit the response matrix of 
only a part of the ring and to represent the rest of the ring as a linear transfer matrix. We 
were unable to get a high precision fit and do not understand why. We probably have to 
use nonlinear transfer matrices. 

Another way to decrease the response matrix size is to reduce the number of steering 
magnets and BPMs. However, in order to achieve a high precision fit, we have to use as 
many BPMs as possible. This leaves only one available option – reducing the number of 
steering magnets. 

 
 
 
 
 



The most obvious minimal set of steering magnets is to use one steering magnet per 
sector. Then in case of one corrector, nine BPMs (narrow bandwidth BPMs excluded), 
and nine quadrupoles (B:Q5 excluded) per sector per plane, the size of the response 
matrix derivative is  

288001200×=× elementsriablesva NN . 
For double-precision calculations the size of the response matrix derivative is about 260 
Mb. The size of the computer memory required to invert a matrix and then manipulate it 
is about four times the size of the matrix, i.e., in this case about 1.0 Gb. This example is 
presented as one set of variables that fits 1 Gb of memory. This set of variables is usually 
used for our calculations. 

Measurements and fitting 
Two applications are used for the response matrix measurement and fit: the 

Operations Analysis Group (OAG) application SROrbitResponse is used to measure the 
response matrices, and the SRLOCOFitting application performs the model fitting. The 
output of the SROrbitResponse application is a file of the measured response matrix of 
the storage ring; this file is used as input for the fitting application. The output of the 
SRLOCOFitting application is a file of fitted variables in the format of the “parameter” 
file of the elegant code [7]. This file is used to update the ideal elegant model of 
the storage ring. When this is done, the calculated elegant response matrix fits (within 
the accuracy of the fit) to the measured one. This updated model can then be used for all 
kinds of calculations in elegant, including calculation of the beta function around the 
ring. 

The measurement takes about 35 seconds per steering magnet, for a total of about 50 
minutes for the measurements of one steering magnet per sector per transverse plane. 
This time does not depend on the number of BPMs used, so all BPMs are always used in 
the measurements. The accuracy of the response matrix measurement (or repeatability) 
can be estimated by measuring the “zero” response, i.e., response measured at the BPMs 
without any changes of the steering magnets. According to such measurements, the 
accuracy of the response matrix measurement is about 1 µm. It is interesting to note here 
that the accuracy of the narrow bandwidth BPMs is, as expected, better; however, their 
nonlinearity prevents them from being used in the fit. 

The fitting process, which is just solving equation (1), consists of two main parts. 
First, the inverse derivative of the response matrix is calculated. This step is time 
consuming and can take up to several hours of computation time (even when we use 
parallel computing on many workstations). However, we must calculate the inverse 
derivative of the response matrix only once for a particular response matrix 
configuration. The second part is the fitting itself. This is done in several iterations using 
the calculated inverse derivative of the response matrix and takes about half an hour.  

 
 
 
 
 



Figure 1 (top) is an example of the measured orbit response together with the ideal 
model response. The bottom plot of the Figure 1 shows the same trajectory after the 
fitting of the model is done. Before the correction, a typical rms difference between the 
ideal model and the measured response matrix is 50 µm. After the fit is done, the rms 
difference is decreased to the noise level of the BPMs, which is about 1 µm.  

 

Figure 1. An example of the orbit shift due to a change in a steering magnet (black line is 
the measurement, red line is the model). Before fitting (top plot), there is significant 
discrepancy between the model and the measurements. After fitting (bottom plot), the 
rms difference between the model and the measured orbit is reduced to 1 µm. 

After this nearly perfect agreement between the model and measured data is achieved, 
we have to ask: does this agreement necessarily imply a good agreement between the 
fitted model and the real elements in the storage ring? Although the number of data 
points (28800) is much greater than the number of fit parameters (1200), this does not 
guarantee the solution is unique. In particular, the redundancy of quadrupoles in the 
storage ring and the lack of ability to store the electron beam without sextupoles make it 
impossible to determine separate quadrupole errors. In other words, it is very likely that 
the measured response matrix can be reproduced (within the accuracy of the 
measurements) using different sets of quadrupole gradients. However, one would expect 
that the BPM gains and steering magnet calibrations should be unique.  

The easiest way to confirm the above statement is to measure several orbit response 
matrices, analyze each one separately, and see how much variation there is between the 
fit parameters for the different data sets. Unfortunately, this requires too much study time. 
In practice, the response matrix for A:H2s, B:H2s, A:V1s, and A:V4s has been measured. 
It was then was split in two parts and analyzed by pieces using two different 



configurations of the steering magnets: A:H2s + A:V4s and B:H2s + A:V1s. Such a 
procedure guarantees that, on the one hand, the measurements were done exactly at the 
same time with the same electron beam parameters. On the other hand, not only are the 
measurements independent, but the inverse derivative of the response matrix must be 
recalculated for both steering magnet configurations, thus ensuring that there is a 
significant difference between the two calculations. 

Figure 2 shows the results of fitting using the two different configurations of steering 
magnets. As expected, the solution for the quadrupoles is ambiguous and shows 
considerable difference between the two sets, while the solution for BPM gains does not 
depend on the response matrix configuration. 

As a confirmation that the two different quadrupole sets indeed represent the same 
response matrix, Figure 3 shows the vertical beta functions calculated by elegant for 
both quadrupole sets. We can see that these two plots are for all practical purposes 
identical. This figure demonstrates that, in spite of the quadrupole calibration ambiguity, 
the fit provides a unique storage ring model in terms of beta functions. The rms 
difference between the beta functions calculated using different sets are 0.1 m for 
horizontal and 0.2 m for vertical beta functions. These rms numbers can be used as an 
estimation of the accuracy of the beta-function determination. Assuming the average beta 
function around the ring is about 10 m, the relative rms accuracy would be of the order of 
a few percent. 



 

 

 
Figure 2. Some results of quadrupole calibrations (top) and BPM gains (bottom) using 
two different configurations of the response matrix. As expected, different configurations 
resulted in different quadrupole calibrations but the same BPM gains. 



Figure 3. Vertical beta function of the storage ring (8 nm×rad lattice) according to the 
response matrix fit. The two plots represent two different response matrix configurations 
used for fitting the model. In spite of having different quadrupole gradients, these two 
models give the same beta functions. 

 

Beta function beating correction 
The model created by the response matrix fit represents the real machine in terms of 

beta functions and can be used for all kinds of calculations. First, the model can be used 
to calculate beta function beating corrections. This work has been done with both the 
low-emittance and the high-emittance lattices. The fitted model was used to calculate the 
beta functions, and then the SRbetaCorrection application was used to compute the 
quadrupole corrections. This application reads a set of desired beta function values at 
quadrupoles and a set of measured beta-function values at quadrupoles, and then uses an 
inverse matrix multiplication to determine a set of gradient corrections. This application 
was previously used to correct beta function modulation using a sparse set of measured 
beta functions from quadrupole scans [8]. The corrections were then applied to the 
storage ring, and the response matrix measurement and fit were performed again. The 
beta functions resulting from the “after correction” response matrix fit are shown in 
Figures 4 and 5. 

It is important to note that the effect of the quadrupole corrections on the storage ring 
exactly coincides with the effect predicted by the model. In other words, the change in 
the beta functions after the correction is exactly the same as that intended by the beta 
function correction application.  

Corrected beta functions improve the symmetry of the machine; this in turn should 
improve the nonlinear beam dynamics and overall performance of the storage ring. The 
positive effect of the correction was indeed observed for the low-emittance lattice; the 
lifetime was increased by 40% and the injection efficiency was improved.  

 



 
Figure 4. Beta functions of the “high-emittance” lattice before correction (top row) and 
after correction (bottom row). 

 
Figure 5. Beta functions of the “low-emittance” lattice before correction (top row) and 
after correction (bottom row). 



At the APS storage ring the lifetime is defined by the nonlinear energy acceptance. 
To confirm that the energy acceptance was increased after the beta function correction, 
the lifetime dependence on the rf voltage was measured. Figure 6 shows the lifetime vs. 
rf voltage taken on three different dates. The important feature of this plot is not the 
absolute lifetime, but the gap voltage where the lifetime achieves a maximum (the overall 
lifetime is dependent on bunch pattern and coupling, which we didn’t reproduce for all 
measurements). This voltage is a measure of the energy acceptance. The first curve 
corresponds to the initial low-emittance lattice without any quadrupole corrections; the 
best lifetime is achieved at 8.0 MV. The second curve was measured after the first 
correction was applied; the maximum is achieved at 8.5 MV. This correction was based 
on the beta functions measured in several quadrupoles by the quadrupole scan method. 
The third curve was measured after the correction based on the response matrix fit. The 
lifetime maximum is achieved on or beyond 9.5 MV. 

 
Figure 6. Lifetime dependence on the rf voltage. The first curve corresponds to the initial 
low-emittance lattice without any quadrupole corrections, the second curve was measured 
after the first correction was applied, and the third curve was measured after the 
correction based on the response matrix fit. The important feature of this plot is the gap 
voltage where the lifetime achieves its maximum. 

BPM gain calibration 
APS has over 400 BPMs in each horizontal and vertical plane. Some of these BPMs 

have substantial gain errors. That is why the BPM gain errors are used as variables to fit 
the measured response matrix. As mentioned above, the fit is reliable and provides BPM 
gain errors that are independent of the solution configuration. Figure 7 shows the results 
of the gain calculations for all BPMs (except narrow bandwidth BPMs) summarized in 
histograms. Here a gain of 1 means 0% gain error, 1.1 means 10% gain error and so on. 
The example of the gain correction applied to the dispersion measurements is presented 
in Figure 8. This plot shows the horizontal dispersion of the low-emittance lattice at the 



B:P5s locations as measured by the dispersion measurement application (black line) and 
the same measurements after applying the gain corrections (red line). We can see that 
after correcting the gain, the dispersion appears less perturbed and smoother (i.e., more 
physical). 

 
Source not found!  

Figure 7. Horizontal and vertical calibrations of the BPM gains.  

 
Figure 8. Dispersion function of the low-emittance lattice at the B:P5 locations around 
the ring. Black line is direct measurements; red line is after the gain correction. 

Conclusions and future plans 
We have created precise linear models of the storage ring in terms of beta functions 

for both low-emittance and high-emittance lattices. Using these models, the beta function 
beating corrections have been successfully applied. The lifetime was increased by 40% 
for the low-emittance lattice as a result of the corrections. 

The models allow the user to apply predictable and precise changes to the existing 
lattice. For example, after applying the beta function corrections, the beta-function 
changes exactly coincide with the changes predicted by the model. 

The generated machine model contains not only the real beta functions of the ring but 
it also provides BPM gain calibrations. This could be useful for a number of applications 
that rely on the BPM readings. 

Unfortunately, one important task has not been accomplished. The excessive number 
of quadrupoles per unit phase advance does not allow us to determine the real gradients 
for every quadrupole. Work on correcting this shortfall will continue in the future. 

Among other future plans is use of the response matrix fit to characterize and correct 
both global and local linear coupling. The implementation of a coupling calculation is 
rather straightforward but requires additional programming. 
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